Степенные выражения (выражения со степенями) и их преобразование. Свойства степеней: формулировки, доказательства, примеры Как умножать числа с разными показателями

Степенные выражения (выражения со степенями) и их преобразование. Свойства степеней: формулировки, доказательства, примеры Как умножать числа с разными показателями
Степенные выражения (выражения со степенями) и их преобразование. Свойства степеней: формулировки, доказательства, примеры Как умножать числа с разными показателями

Сложение и вычитание степеней

Очевидно, что числа со степенями могут слагаться, как другие величины , путем их сложения одно за другим со своими знаками .

Так, сумма a 3 и b 2 есть a 3 + b 2 .
Сумма a 3 — b n и h 5 -d 4 есть a 3 — b n + h 5 — d 4 .

Коэффициенты одинаковых степеней одинаковых переменных могут слагаться или вычитаться.

Так, сумма 2a 2 и 3a 2 равна 5a 2 .

Это так же очевидно, что если взять два квадрата а, или три квадрата а, или пять квадратов а.

Но степени различных переменных и различные степени одинаковых переменных , должны слагаться их сложением с их знаками.

Так, сумма a 2 и a 3 есть сумма a 2 + a 3 .

Это очевидно, что квадрат числа a, и куб числа a, не равно ни удвоенному квадрату a, но удвоенному кубу a.

Сумма a 3 b n и 3a 5 b 6 есть a 3 b n + 3a 5 b 6 .

Вычитание степеней проводится таким же образом, что и сложение, за исключением того, что знаки вычитаемых должны соответственно быть изменены.

Или:
2a 4 — (-6a 4) = 8a 4
3h 2 b 6 — 4h 2 b 6 = -h 2 b 6
5(a — h) 6 — 2(a — h) 6 = 3(a — h) 6

Умножение степеней

Числа со степенями могут быть умножены, как и другие величины, путем написания их одно за другим, со знаком умножения или без него между ними.

Так, результат умножения a 3 на b 2 равен a 3 b 2 или aaabb.

Или:
x -3 ⋅ a m = a m x -3
3a 6 y 2 ⋅ (-2x) = -6a 6 xy 2
a 2 b 3 y 2 ⋅ a 3 b 2 y = a 2 b 3 y 2 a 3 b 2 y

Результат в последнем примере может быть упорядочен путём сложения одинаковых переменных.
Выражение примет вид: a 5 b 5 y 3 .

Сравнивая несколько чисел(переменных) со степенями, мы можем увидеть, что если любые два из них умножаются, то результат — это число (переменная) со степенью, равной сумме степеней слагаемых.

Так, a 2 .a 3 = aa.aaa = aaaaa = a 5 .

Здесь 5 — это степень результата умножения, равная 2 + 3, сумме степеней слагаемых.

Так, a n .a m = a m+n .

Для a n , a берётся как множитель столько раз, сколько равна степень n;

И a m , берётся как множитель столько раз, сколько равна степень m;

Поэтому, степени с одинаковыми основами могут быть умножены путём сложения показателей степеней.

Так, a 2 .a 6 = a 2+6 = a 8 . И x 3 .x 2 .x = x 3+2+1 = x 6 .

Или:
4a n ⋅ 2a n = 8a 2n
b 2 y 3 ⋅ b 4 y = b 6 y 4
(b + h — y) n ⋅ (b + h — y) = (b + h — y) n+1

Умножьте (x 3 + x 2 y + xy 2 + y 3) ⋅ (x — y).
Ответ: x 4 — y 4 .
Умножьте (x 3 + x — 5) ⋅ (2x 3 + x + 1).

Это правило справедливо и для чисел, показатели степени которых — отрицательные .

1. Так, a -2 .a -3 = a -5 . Это можно записать в виде (1/aa).(1/aaa) = 1/aaaaa.

2. y -n .y -m = y -n-m .

3. a -n .a m = a m-n .

Если a + b умножаются на a — b, результат будет равен a 2 — b 2: то есть

Результат умножения суммы или разницы двух чисел равен сумме или разнице их квадратов.

Если умножается сумма и разница двух чисел, возведённых в квадрат , результат будет равен сумме или разнице этих чисел в четвёртой степени.

Так, (a — y).(a + y) = a 2 — y 2 .
(a 2 — y 2)⋅(a 2 + y 2) = a 4 — y 4 .
(a 4 — y 4)⋅(a 4 + y 4) = a 8 — y 8 .

Деление степеней

Числа со степенями могут быть поделены, как и другие числа, путем отнимая от делимого делителя, или размещением их в форме дроби.

Таким образом a 3 b 2 делённое на b 2 , равно a 3 .

Запись a 5 , делённого на a 3 , выглядит как $\frac $. Но это равно a 2 . В ряде чисел
a +4 , a +3 , a +2 , a +1 , a 0 , a -1 , a -2 , a -3 , a -4 .
любое число может быть поделено на другое, а показатель степени будет равен разнице показателей делимых чисел.

При делении степеней с одинаковым основанием их показатели вычитаются. .

Так, y 3:y 2 = y 3-2 = y 1 . То есть, $\frac = y$.

И a n+1:a = a n+1-1 = a n . То есть $\frac = a^n$.

Или:
y 2m: y m = y m
8a n+m: 4a m = 2a n
12(b + y) n: 3(b + y) 3 = 4(b +y) n-3

Правило также справедливо и для чисел с отрицательными значениями степеней.
Результат деления a -5 на a -3 , равен a -2 .
Также, $\frac: \frac = \frac .\frac = \frac = \frac $.

h 2:h -1 = h 2+1 = h 3 или $h^2:\frac = h^2.\frac = h^3$

Необходимо очень хорошо усвоить умножение и деление степеней, так как такие операции очень широко применяются в алгебре.

Примеры решения примеров с дробями, содержащими числа со степенями

1. Уменьшите показатели степеней в $\frac $ Ответ: $\frac $.

2. Уменьшите показатели степеней в $\frac $. Ответ: $\frac $ или 2x.

3. Уменьшите показатели степеней a 2 /a 3 и a -3 /a -4 и приведите к общему знаменателю.
a 2 .a -4 есть a -2 первый числитель.
a 3 .a -3 есть a 0 = 1, второй числитель.
a 3 .a -4 есть a -1 , общий числитель.
После упрощения: a -2 /a -1 и 1/a -1 .

4. Уменьшите показатели степеней 2a 4 /5a 3 и 2 /a 4 и приведите к общему знаменателю.
Ответ: 2a 3 /5a 7 и 5a 5 /5a 7 или 2a 3 /5a 2 и 5/5a 2 .

5. Умножьте (a 3 + b)/b 4 на (a — b)/3.

6. Умножьте (a 5 + 1)/x 2 на (b 2 — 1)/(x + a).

7. Умножьте b 4 /a -2 на h -3 /x и a n /y -3 .

8. Разделите a 4 /y 3 на a 3 /y 2 . Ответ: a/y.

Свойства степени

Напоминаем, что в данном уроке разбираются свойства степеней с натуральными показателями и нулём. Степени с рациональными показателями и их свойства будут рассмотрены в уроках для 8 классов.

Степень с натуральным показателем обладает несколькими важными свойствами, которые позволяют упрощать вычисления в примерах со степенями.

Свойство № 1
Произведение степеней

При умножении степеней с одинаковыми основаниями основание остаётся без изменений, а показатели степеней складываются.

a m · a n = a m + n , где « a » - любое число, а « m », « n » - любые натуральные числа.

Данное свойство степеней также действует на произведение трёх и более степеней.

  • Упростить выражение.
    b · b 2 · b 3 · b 4 · b 5 = b 1 + 2 + 3 + 4 + 5 = b 15
  • Представить в виде степени.
    6 15 · 36 = 6 15 · 6 2 = 6 15 · 6 2 = 6 17
  • Представить в виде степени.
    (0,8) 3 · (0,8) 12 = (0,8) 3 + 12 = (0,8) 15
  • Обратите внимание, что в указанном свойстве речь шла только об умножении степеней с одинаковыми основаниями . Оно не относится к их сложению.

    Нельзя заменять сумму (3 3 + 3 2) на 3 5 . Это понятно, если
    посчитать (3 3 + 3 2) = (27 + 9) = 36 , а 3 5 = 243

    Свойство № 2
    Частное степеней

    При делении степеней с одинаковыми основаниями основание остаётся без изменений, а из показателя степени делимого вычитают показатель степени делителя.

  • Записать частное в виде степени
    (2b) 5: (2b) 3 = (2b) 5 − 3 = (2b) 2
  • Вычислить.

11 3 − 2 · 4 2 − 1 = 11 · 4 = 44
Пример. Решить уравнение. Используем свойство частного степеней.
3 8: t = 3 4

Ответ: t = 3 4 = 81

Пользуясь свойствами № 1 и № 2, можно легко упрощать выражения и производить вычисления.

Пример. Упростить выражение.
4 5m + 6 · 4 m + 2: 4 4m + 3 = 4 5m + 6 + m + 2: 4 4m + 3 = 4 6m + 8 − 4m − 3 = 4 2m + 5

Пример. Найти значение выражения, используя свойства степени.

2 11 − 5 = 2 6 = 64

Обратите внимание, что в свойстве 2 речь шла только о делении степеней с одинаковыми основаниями.

Нельзя заменять разность (4 3 −4 2) на 4 1 . Это понятно, если посчитать (4 3 −4 2) = (64 − 16) = 48 , а 4 1 = 4

Свойство № 3
Возведение степени в степень

При возведении степени в степень основание степени остаётся без изменения, а показатели степеней перемножаются.

(a n) m = a n · m , где « a » - любое число, а « m », « n » - любые натуральные числа.

Напоминаем, что частное можно представить в виде дроби. Поэтому на теме возведение дроби в степень мы остановимся более подробно на следующей странице.

Как умножать степени

Как умножать степени? Какие степени можно перемножить, а какие - нет? Как число умножить на степень?

В алгебре найти произведение степеней можно в двух случаях:

1) если степени имеют одинаковые основания;

2) если степени имеют одинаковые показатели.

При умножении степеней с одинаковыми основаниями надо основание оставить прежним, а показатели - сложить:

При умножении степеней с одинаковыми показателями общий показатель можно вынести за скобки:

Рассмотрим, как умножать степени, на конкретных примерах.

Единицу в показателе степени не пишут, но при умножении степеней - учитывают:

При умножении количество степеней может быть любое. Следует помнить, что перед буквой знак умножения можно не писать:

В выражениях возведение в степень выполняется в первую очередь.

Если нужно число умножить на степень, сначала следует выполнить возведение в степень, а уже потом - умножение:

Умножение степеней с одинаковыми основаниями

Этот видеоурок доступен по абонементу

У вас уже есть абонемент? Войти

На этом уроке мы изучим умножение степеней с одинаковыми основаниями. Вначале вспомним определение степени и сформулируем теорему о справедливости равенства . Затем приведем примеры ее применения на конкретных числах и докажем ее. Также мы применим теорему для решения различных задач.

Тема: Степень с натуральным показателем и ее свойства

Урок: Умножение степеней с одинаковыми основаниями (формула )

1. Основные определения

Основные определения:

n — показатель степени,

n -ая степень числа.

2. Формулировка теоремы 1

Теорема 1. Для любого числа а и любых натуральных n и k справедливо равенство:

По-иному: если а – любое число; n и k натуральные числа, то:

Отсюда правило 1:

3. Разъясняющие задачи

Вывод: частные случаи подтвердили правильность теоремы №1. Докажем ее в общем случае, то есть для любого а и любых натуральных n и k.

4. Доказательство теоремы 1

Дано число а – любое; числа n и k – натуральные. Доказать:

Доказательство основано на определении степени.

5. Решение примеров с помощью теоремы 1

Пример 1: Представьте в виде степени.

Для решения следующих примеров воспользуемся теоремой 1.

ж)

6. Обобщение теоремы 1

Здесь использовано обобщение:

7. Решение примеров с помощью обобщения теоремы 1

8. Решение различных задач с помощью теоремы 1

Пример 2: Вычислите (можно использовать таблицу основных степеней).

а) (по таблице)

б)

Пример 3: Запишите в виде степени с основанием 2.

а)

Пример 4: Определите знак числа:

, а – отрицательное, так как показатель степени при -13 нечетный.

Пример 5: Замените (·) степенью числа с основанием r:

Имеем , то есть .

9. Подведение итогов

1. Дорофеев Г.В., Суворова С.Б., Бунимович Е.А. и др. Алгебра 7. 6 издание. М.: Просвещение. 2010 г.

1. Школьный помощник (Источник).

1. Представьте в виде степени:

а) б) в) г) д)

3. Запишите в виде степени с основанием 2:

4. Определите знак числа:

а)

5. Замените (·) степенью числа с основанием r:

а) r 4 · (·) = r 15 ; б) (·) · r 5 = r 6

Умножение и деление степеней с одинаковыми показателями

На этом уроке мы изучим умножение степеней с одинаковыми показателями. Сначала вспомним основные определения и теоремы об умножении и делении степеней с одинаковыми основаниями и возведении степень в степень. Затем сформулируем и докажем теоремы об умножении и делении степеней с одинаковыми показателями. А затем с их помощью решим ряд типичных задач.

Напоминание основных определений и теорем

Здесь a — основание степени,

n -ая степень числа.

Теорема 1. Для любого числа а и любых натуральных n иk справедливо равенство:

При умножении степеней с одинаковыми основаниями показатели складываются, основание остается неизменным.

Теорема 2. Для любого числа а и любых натуральных n и k, таких, что n > k справедливо равенство:

При делении степеней с одинаковыми основаниями показатели отнимаются, а основание остается неизменным.

Теорема 3. Для любого числа а и любых натуральных n иk справедливо равенство:

Все перечисленные теоремы были о степенях с одинаковыми основаниями , на этом уроке будут рассмотрены степени с одинаковыми показателями .

Примеры на умножение степеней с одинаковыми показателями

Рассмотрим следующие примеры:

Распишем выражения по определению степени.

Вывод: из примеров можно заметить, что , но это еще нужно доказать. Сформулируем теорему и докажем ее в общем случае, то есть для любых а и b и любого натурального n.

Формулировка и доказательство теоремы 4

Для любых чисел а и b и любого натурального n справедливо равенство:

Доказательство теоремы 4.

По определению степени:

Итак, мы доказали, что .

Чтобы перемножить степени с одинаковыми показателями, достаточно перемножить основания, а показатель степени оставить неизменным.

Формулировка и доказательство теоремы 5

Сформулируем теорему для деления степеней с одинаковыми показателями.

Для любого числа а и b () и любого натурального n справедливо равенство:

Доказательство теоремы 5.

Распишем и по определению степени:

Формулировка теорем словами

Итак, мы доказали, что .

Чтобы разделить друг на друга степени с одинаковыми показателями, достаточно разделить одно основание на другое, а показатель степени оставить неизменным.

Решение типичных задач с помощью теоремы 4

Пример 1: Представить в виде произведения степеней.

Для решения следующих примеров воспользуемся теоремой 4.

Для решения следующего примера вспомним формулы:

Обобщение теоремы 4

Обобщение теоремы 4:

Решение примеров с помощью обобщенной теоремы 4

Продолжение решения типичных задач

Пример 2: Запишите в виде степени произведения.

Пример 3: Запишите в виде степени с показателем 2.

Примеры на вычисление

Пример 4: Вычислить самым рациональным способом.

2. Мерзляк А.Г., Полонский В.Б., Якир М.С. Алгебра 7. М.: ВЕНТАНА-ГРАФ

3. Колягин Ю.М., Ткачёва М.В., Фёдорова Н.Е. и др. Алгебра 7 .М.: Просвещение. 2006 г.

2. Школьный помощник (Источник).

1. Представить в виде произведения степеней:

а) ; б) ; в) ; г) ;

2. Запишите в виде степени произведения:

3. Запишите в виде степени с показателем 2:

4. Вычислить самым рациональным способом.

Урок математики по теме «Умножение и деление степеней»

Разделы: Математика

Педагогическая цель :

  • ученик научится различать свойства умножения и деления степеней с натуральным показателем; применять эти свойства в случае с одинаковыми основаниями;
  • ученик получит возможность уметь выполнять преобразования степеней с разными основаниями и уметь выполнять преобразования в комбинированных заданиях.
  • Задачи :

  • организовать работу учащихся посредством повторения ранее изученного материала;
  • обеспечить уровень воспроизведения посредством выполнения упражнений различного типа;
  • организовать проверку по самооценке учащихся посредством тестирования.
  • Деятельностные единицы учения: определение степени с натуральным показателем; компоненты степени; определение частного; сочетательный закон умножения.

    I. Организация демонстрации овладение учащимися имеющимися знаниями. (шаг 1)

    а) Актуализация знаний:

    2) Сформулировать определение степени с натуральным показателем.

    a n =a a a a … а (n раз)

    b k =b b b b a… b (k раз) Обосновать ответ.

    II. Организация самооценивания обучаемого степенью владения актуальным опытом. (шаг 2)

    Тест для самопроверки: (индивидуальная работа в двух вариантах.)

    А1) Представьте произведение 7 7 7 7 x x x в виде степени:

    А2) Представить в виде произведения степень (-3) 3 х 2

    A3) Вычислите: -2 3 2 + 4 5 3

    Количество заданий в тесте я подбираю в соответствии с подготовкой уровня класса.

    К тесту даю ключ для самопроверки. Критерии: зачёт – не зачёт.

    III. Учебно-практическая задача (шаг 3) + шаг 4. (сформулируют свойства сами ученики)

  • вычислите: 2 2 2 3 = ? 3 3 3 2 3 =?
  • Упростите: а 2 а 20 = ? b 30 b 10 b 15 = ?
  • В ходе решения задачи 1) и 2) учащиеся предлагают решение, а я, как учитель, организую класс на нахождение способа для упрощения степеней при умножении с одинаковыми основаниями.

    Учитель: придумать способ для упрощения степеней при умножении с одинаковыми основаниями.

    На кластере появляется запись:

    Формулируется тема урока. Умножение степеней.

    Учитель: придумайте правило деления степеней с одинаковыми основаниями.

    Рассуждения: каким действием проверяется деление? а 5: а 3 = ? что а 2 а 3 = а 5

    Возвращаюсь к схеме – кластер и дополняем запись – ..при делении вычитаем и дописываем тему урока. …и деление степеней.

    IV. Сообщение учащимся пределов познания (как минимум и как максимум).

    Учитель: задачей минимума на сегодняшний урок является научиться применять свойства умножения и деления степеней с одинаковыми основаниями, а максимума: применять умножение и деление совместно.

    На доске записываем: а m а n = а m+n ; а m: а n = а m-n

    V. Организация изучения нового материала. (шаг 5)

    а) По учебнику: №403 (а, в, д) задания с разными формулировками

    №404 (а, д, е) самостоятельная работа, затем организую взаимопроверку, даю ключи.

    б) При каком значении m справедливо равенство? а 16 а m = а 32 ; х h х 14 = х 28 ; х 8 (*) = х 14

    Задание: придумать аналогичные примеры для деления.

    в) № 417(а), №418 (а) Ловушки для учеников : х 3 х n = х 3n ; 3 4 3 2 = 9 6 ; а 16: а 8 = а 2 .

    VI. Обобщение изученного, проведение диагностической работы (что побуждает учеников, а не учителя изучать данную тему)(шаг 6)

    Диагностическая работа.

    Тест (ключи поместить на обратной стороне теста).

    Варианты заданий: представьте в виде степени частное х 15: х 3 ; представьте в виде степени произведение (-4) 2 (-4) 5 (-4) 7 ; при каком m справедливо равенство а 16 а m = а 32 ; найдите значение выражения h 0: h 2 при h =0,2; вычислите значение выражения (5 2 5 0) : 5 2 .

    Итог урока. Рефлексия. Делю класс на две группы.

    Найдите аргументы I группа: в пользу знания свойств степени, а II группа – аргументы, которые будут говорить о том, что можно обойтись без свойств. Все ответы выслушиваем, делаем выводы. На последующих уроках можно предложить статистические данные и назвать рубрику «В голове не укладывается!»

  • Средний человек съедает 32 10 2 кг огурцов в течение жизни.
  • Оса способна совершить беспосадочный перелёт на 3,2 10 2 км.
  • Когда стекло трескается, трещина распространяется со скоростью около 5 10 3 км/ч.
  • Лягушка съедает за свою жизнь более 3 тонн комаров. Используя степень, запишите в кг.
  • Наиболее плодовитой считается океанская рыба – луна (Моlа mola), которая откладывает за один нерест до 300000000 икринок диаметром около 1,3 мм. Запишите это число, используя степень.
  • VII. Домашнее задание.

    Историческая справка. Какие числа называют числами Ферма.

    П.19. №403, №408, №417

    Используемая литература:

  • Учебник «Алгебра-7», авторы Ю.Н. Макарычев, Н.Г. Миндюк и др.
  • Дидактический материал для 7 класса, Л.В. Кузнецова, Л.И. Звавич, С.Б. Суворова.
  • Энциклопедия по математике.
  • Журнал «Квант».
  • Свойства степеней, формулировки, доказательства, примеры.

    После того как определена степень числа, логично поговорить про свойства степени . В этой статье мы дадим основные свойства степени числа, при этом затронем все возможные показатели степени. Здесь же мы приведем доказательства всех свойств степени, а также покажем, как применяются эти свойства при решении примеров.

    Навигация по странице.

    Свойства степеней с натуральными показателями

    По определению степени с натуральным показателем степень a n представляет собой произведение n множителей, каждый из которых равен a . Отталкиваясь от этого определения, а также используя свойства умножения действительных чисел , можно получить и обосновать следующие свойства степени с натуральным показателем :

  • основное свойство степени a m ·a n =a m+n , его обобщение a n 1 ·a n 2 ·…·a n k =a n 1 +n 2 +…+n k ;
  • свойство частного степеней с одинаковыми основаниями a m:a n =a m−n ;
  • свойство степени произведения (a·b) n =a n ·b n , его расширение (a 1 ·a 2 ·…·a k) n =a 1 n ·a 2 n ·…·a k n ;
  • свойство частного в натуральной степени (a:b) n =a n:b n ;
  • возведение степени в степень (a m) n =a m·n , его обобщение (((a n 1) n 2) …) n k =a n 1 ·n 2 ·…·n k ;
  • сравнение степени с нулем:
    • если a>0 , то a n >0 для любого натурального n ;
    • если a=0 , то a n =0 ;
    • если a 2·m >0 , если a 2·m−1 n ;
    • если m и n такие натуральные числа, что m>n , то при 0m n , а при a>0 справедливо неравенство a m >a n .
    • Сразу заметим, что все записанные равенства являются тождественными при соблюдении указанных условий, и их правые и левые части можно поменять местами. Например, основное свойство дроби a m ·a n =a m+n при упрощении выражений часто применяется в виде a m+n =a m ·a n .

      Теперь рассмотрим каждое из них подробно.

      Начнем со свойства произведения двух степеней с одинаковыми основаниями, которое называют основным свойством степени : для любого действительного числа a и любых натуральных чисел m и n справедливо равенство a m ·a n =a m+n .

      Докажем основное свойство степени. По определению степени с натуральным показателем произведение степеней с одинаковыми основаниями вида a m ·a n можно записать как произведение . В силу свойств умножения полученное выражение можно записать как , а это произведение есть степень числа a с натуральным показателем m+n , то есть, a m+n . На этом доказательство завершено.

      Приведем пример, подтверждающий основное свойство степени. Возьмем степени с одинаковыми основаниями 2 и натуральными степенями 2 и 3 , по основному свойству степени можно записать равенство 2 2 ·2 3 =2 2+3 =2 5 . Проверим его справедливость, для чего вычислим значения выражений 2 2 ·2 3 и 2 5 . Выполняя возведение в степень, имеем 2 2 ·2 3 =(2·2)·(2·2·2)=4·8=32 и 2 5 =2·2·2·2·2=32 , так как получаются равные значения, то равенство 2 2 ·2 3 =2 5 — верное, и оно подтверждает основное свойство степени.

      Основное свойство степени на базе свойств умножения можно обобщить на произведение трех и большего числа степеней с одинаковыми основаниями и натуральными показателями. Так для любого количества k натуральных чисел n 1 , n 2 , …, n k справедливо равенство a n 1 ·a n 2 ·…·a n k =a n 1 +n 2 +…+n k .

      Например, (2,1) 3 ·(2,1) 3 ·(2,1) 4 ·(2,1) 7 = (2,1) 3+3+4+7 =(2,1) 17 .

      Можно переходить к следующему свойству степеней с натуральным показателем – свойству частного степеней с одинаковыми основаниями : для любого отличного от нуля действительного числа a и произвольных натуральных чисел m и n , удовлетворяющих условию m>n , справедливо равенство a m:a n =a m−n .

      Прежде чем привести доказательство этого свойства, обговорим смысл дополнительных условий в формулировке. Условие a≠0 необходимо для того, чтобы избежать деления на нуль, так как 0 n =0 , а при знакомстве с делением мы условились, что на нуль делить нельзя. Условие m>n вводится для того, чтобы мы не выходили за рамки натуральных показателей степени. Действительно, при m>n показатель степени a m−n является натуральным числом, в противном случае он будет либо нулем (что происходит при m−n), либо отрицательным числом (что происходит при m m−n ·a n =a (m−n)+n =a m . Из полученного равенства a m−n ·a n =a m и из связи умножения с делением следует, что a m−n является частным степеней a m и a n . Этим доказано свойство частного степеней с одинаковыми основаниями.

      Приведем пример. Возьмем две степени с одинаковыми основаниями π и натуральными показателями 5 и 2 , рассмотренному свойству степени отвечает равенство π 5:π 2 =π 5−3 =π 3 .

      Теперь рассмотрим свойство степени произведения : натуральная степень n произведения двух любых действительных чисел a и b равна произведению степеней a n и b n , то есть, (a·b) n =a n ·b n .

      Действительно, по определению степени с натуральным показателем имеем . Последнее произведение на основании свойств умножения можно переписать как , что равно a n ·b n .

      Приведем пример: .

      Данное свойство распространяется на степень произведения трех и большего количества множителей. То есть, свойство натуральной степени n произведения k множителей записывается как (a 1 ·a 2 ·…·a k) n =a 1 n ·a 2 n ·…·a k n .

      Для наглядности покажем это свойство на примере. Для произведения трех множителей в степени 7 имеем .

      Следующее свойство представляет собой свойство частного в натуральной степени : частное действительных чисел a и b , b≠0 в натуральной степени n равно частному степеней a n и b n , то есть, (a:b) n =a n:b n .

      Доказательство можно провести, используя предыдущее свойство. Так (a:b) n ·b n =((a:b)·b) n =a n , а из равенства (a:b) n ·b n =a n следует, что (a:b) n является частным от деления a n на b n .

      Запишем это свойство на примере конкретных чисел: .

      Теперь озвучим свойство возведения степени в степень : для любого действительного числа a и любых натуральных чисел m и n степень a m в степени n равна степени числа a с показателем m·n , то есть, (a m) n =a m·n .

      Например, (5 2) 3 =5 2·3 =5 6 .

      Доказательством свойства степени в степени является следующая цепочка равенств: .

      Рассмотренное свойство можно распространить на степень в степени в степени и т.д. Например, для любых натуральных чисел p , q , r и s справедливо равенство . Для большей ясности приведем пример с конкретными числами: (((5,2) 3) 2) 5 =(5,2) 3+2+5 =(5,2) 10 .

      Осталось остановиться на свойствах сравнения степеней с натуральным показателем.

      Начнем с доказательства свойства сравнения нуля и степени с натуральным показателем.

      Для начала обоснуем, что a n >0 при любом a>0 .

      Произведение двух положительных чисел является положительным числом, что следует из определения умножения. Этот факт и свойства умножения позволяют утверждать, что результат умножения любого числа положительных чисел также будет положительным числом. А степень числа a с натуральным показателем n по определению является произведением n множителей, каждый из которых равен a . Эти рассуждения позволяют утверждать, что для любого положительного основания a степень a n есть положительное число. В силу доказанного свойства 3 5 >0 , (0,00201) 2 >0 и .

      Достаточно очевидно, что для любого натурального n при a=0 степень a n есть нуль. Действительно, 0 n =0·0·…·0=0 . К примеру, 0 3 =0 и 0 762 =0 .

      Переходим к отрицательным основаниям степени.

      Начнем со случая, когда показатель степени является четным числом, обозначим его как 2·m , где m — натуральное. Тогда . По правилу умножения отрицательных чисел каждое из произведений вида a·a равно произведению модулей чисел a и a , значит, является положительным числом. Следовательно, положительным будет и произведение и степень a 2·m . Приведем примеры: (−6) 4 >0 , (−2,2) 12 >0 и .

      Наконец, когда основание степени a является отрицательным числом, а показатель степени есть нечетное число 2·m−1 , то . Все произведения a·a являются положительными числами, произведение этих положительных чисел также положительно, а его умножение на оставшееся отрицательное число a дает в итоге отрицательное число. В силу этого свойства (−5) 3 17 n n представляет собой произведение левых и правых частей n верных неравенств aсвойств неравенств справедливо и доказываемое неравенство вида a n n . Например, в силу этого свойства справедливы неравенства 3 7 7 и .

      Осталось доказать последнее из перечисленных свойств степеней с натуральными показателями. Сформулируем его. Из двух степеней с натуральными показателями и одинаковыми положительными основаниями, меньшими единицы, больше та степень, показатель которой меньше; а из двух степеней с натуральными показателями и одинаковыми основаниями, большими единицы, больше та степень, показатель которой больше. Переходим к доказательству этого свойства.

      Докажем, что при m>n и 0m n . Для этого запишем разность a m −a n и сравним ее с нулем. Записанная разность после вынесения a n за скобки примет вид a n ·(a m−n −1) . Полученное произведение отрицательно как произведение положительного числа a n и отрицательного числа a m−n −1 (a n положительна как натуральная степень положительного числа, а разность a m−n −1 отрицательна, так как m−n>0 в силу исходного условия m>n , откуда следует, что при 0m−n меньше единицы). Следовательно, a m −a n m n , что и требовалось доказать. Для примера приведем верное неравенство .

      Осталось доказать вторую часть свойства. Докажем, что при m>n и a>1 справедливо a m >a n . Разность a m −a n после вынесения a n за скобки принимает вид a n ·(a m−n −1) . Это произведение положительно, так как при a>1 степень a n есть положительное число, и разность a m−n −1 есть положительное число, так как m−n>0 в силу начального условия, и при a>1 степень a m−n больше единицы. Следовательно, a m −a n >0 и a m >a n , что и требовалось доказать. Иллюстрацией этого свойства служит неравенство 3 7 >3 2 .

      Свойства степеней с целыми показателями

      Так как целые положительные числа есть натуральные числа, то все свойства степеней с целыми положительными показателями в точности совпадают со свойствами степеней с натуральными показателями, перечисленными и доказанными в предыдущем пункте.

      Степень с целым отрицательным показателем, а также степень с нулевым показателем мы определяли так, чтобы оставались справедливыми все свойства степеней с натуральными показателями, выражаемые равенствами. Поэтому, все эти свойства справедливы и для нулевых показателей степени, и для отрицательных показателей, при этом, конечно, основания степеней отличны от нуля.

      Итак, для любых действительных и отличных от нуля чисел a и b , а также любых целых чисел m и n справедливы следующие свойства степеней с целыми показателями :

    • a m ·a n =a m+n ;
    • a m:a n =a m−n ;
    • (a·b) n =a n ·b n ;
    • (a:b) n =a n:b n ;
    • (a m) n =a m·n ;
    • если n – целое положительное число, a и b – положительные числа, причем an n и a −n >b −n ;
    • если m и n – целые числа, причем m>n , то при 0m n , а при a>1 выполняется неравенство a m >a n .
    • При a=0 степени a m и a n имеют смысл лишь когда и m , и n положительные целые числа, то есть, натуральные числа. Таким образом, только что записанные свойства также справедливы для случаев, когда a=0 , а числа m и n – целые положительные.

      Доказать каждое из этих свойств не составляет труда, для этого достаточно использовать определения степени с натуральным и целым показателем, а также свойства действий с действительными числами. Для примера докажем, что свойство степени в степени выполняется как для целых положительных чисел, так и для целых неположительных чисел. Для этого нужно показать, что если p есть нуль или натуральное число и q есть нуль или натуральное число, то справедливы равенства (a p) q =a p·q , (a −p) q =a (−p)·q , (a p) −q =a p·(−q) и (a −p) −q =a (−p)·(−q) . Сделаем это.

      Для положительных p и q равенство (a p) q =a p·q доказано в предыдущем пункте. Если p=0 , то имеем (a 0) q =1 q =1 и a 0·q =a 0 =1 , откуда (a 0) q =a 0·q . Аналогично, если q=0 , то (a p) 0 =1 и a p·0 =a 0 =1 , откуда (a p) 0 =a p·0 . Если же и p=0 и q=0 , то (a 0) 0 =1 0 =1 и a 0·0 =a 0 =1 , откуда (a 0) 0 =a 0·0 .

      Теперь докажем, что (a −p) q =a (−p)·q . По определению степени с целым отрицательным показателем , тогда . По свойству частного в степени имеем . Так как 1 p =1·1·…·1=1 и , то . Последнее выражение по определению является степенью вида a −(p·q) , которую в силу правил умножения можно записать как a (−p)·q .

      Аналогично .

      И .

      По такому же принципу можно доказать все остальные свойства степени с целым показателем, записанные в виде равенств.

      В предпоследнем из записанных свойств стоит остановиться на доказательстве неравенства a −n >b −n , которое справедливо для любого целого отрицательного −n и любых положительных a и b , для которых выполняется условие a. Запишем и преобразуем разность левой и правой частей этого неравенства: . Так как по условию an n , следовательно, b n −a n >0 . Произведение a n ·b n тоже положительно как произведение положительных чисел a n и b n . Тогда полученная дробь положительна как частное положительных чисел b n −a n и a n ·b n . Следовательно, откуда a −n >b −n , что и требовалось доказать.

      Последнее свойство степеней с целыми показателями доказывается так же, как аналогичное свойство степеней с натуральными показателями.

      Свойства степеней с рациональными показателями

      Степень с дробным показателем мы определяли, распространяя на нее свойства степени с целым показателем. Иными словами, степени с дробными показателями обладают теми же свойствами, что и степени с целыми показателями. А именно:

    1. свойство произведения степеней с одинаковыми основаниями при a>0 , а если и , то при a≥0 ;
    2. свойство частного степеней с одинаковыми основаниями при a>0 ;
    3. свойство произведения в дробной степени при a>0 и b>0 , а если и , то при a≥0 и (или) b≥0 ;
    4. свойство частного в дробной степени при a>0 и b>0 , а если , то при a≥0 и b>0 ;
    5. свойство степени в степени при a>0 , а если и , то при a≥0 ;
    6. свойство сравнения степеней с равными рациональными показателями: для любых положительных чисел a и b , a0 справедливо неравенство a p p , а при p p >b p ;
    7. свойство сравнения степеней с рациональными показателями и равными основаниями: для рациональных чисел p и q , p>q при 0p q , а при a>0 – неравенство a p >a q .
    8. Доказательство свойств степеней с дробными показателями базируется на определении степени с дробным показателем, на свойствах арифметического корня n-ой степени и на свойствах степени с целым показателем. Приведем доказательства.

      По определению степени с дробным показателем и , тогда . Свойства арифметического корня позволяют нам записать следующие равенства . Дальше, используя свойство степени с целым показателем, получаем , откуда по определению степени с дробным показателем имеем , а показатель полученной степени можно преобразовать так: . На этом доказательство завершено.

      Абсолютно аналогично доказывается второе свойство степеней с дробными показателями:

      По схожим принципам доказываются и остальные равенства:

      Переходим к доказательству следующего свойства. Докажем, что для любых положительных a и b , a0 справедливо неравенство a p p , а при p p >b p . Запишем рациональное число p как m/n , где m – целое число, а n – натуральное. Условиям p 0 в этом случае будут эквивалентны условия m 0 соответственно. При m>0 и am m . Из этого неравенства по свойству корней имеем , а так как a и b – положительные числа, то на основе определения степени с дробным показателем полученное неравенство можно переписать как , то есть, a p p .

      Аналогично, при m m >b m , откуда , то есть, и a p >b p .

      Осталось доказать последнее из перечисленных свойств. Докажем, что для рациональных чисел p и q , p>q при 0p q , а при a>0 – неравенство a p >a q . Мы всегда можем привести к общему знаменателю рациональные числа p и q , пусть при этом мы получим обыкновенные дроби и , где m 1 и m 2 – целые числа, а n — натуральное. При этом условию p>q будет соответствовать условие m 1 >m 2 , что следует из правила сравнения обыкновенных дробей с одинаковыми знаменателями. Тогда по свойству сравнения степеней с одинаковыми основаниями и натуральными показателями при 0m 1 m 2 , а при a>1 – неравенство a m 1 >a m 2 . Эти неравенства по свойствам корней можно переписать соответственно как и . А определение степени с рациональным показателем позволяет перейти к неравенствам и соответственно. Отсюда делаем окончательный вывод: при p>q и 0p q , а при a>0 – неравенство a p >a q .

      Свойства степеней с иррациональными показателями

      Из того, как определяется степень с иррациональным показателем, можно заключить, что она обладает всеми свойствами степеней с рациональными показателями. Так для любых a>0 , b>0 и иррациональных чисел p и q справедливы следующие свойства степеней с иррациональными показателями :

      1. a p ·a q =a p+q ;
      2. a p:a q =a p−q ;
      3. (a·b) p =a p ·b p ;
      4. (a:b) p =a p:b p ;
      5. (a p) q =a p·q ;
      6. для любых положительных чисел a и b , a0 справедливо неравенство a p p , а при p p >b p ;
      7. для иррациональных чисел p и q , p>q при 0p q , а при a>0 – неравенство a p >a q .
      8. Отсюда можно сделать вывод, что степени с любыми действительными показателями p и q при a>0 обладают этими же свойствами.

    • Алгебра – 10 класс. Тригонометрические уравнения Урок и презентация на тему: "Решение простейших тригонометрических уравнений" Дополнительные материалы Уважаемые пользователи, не забывайте оставлять свои комментарии, отзывы, пожелания! Все материалы […]
    • Открыт конкурс на позицию «ПРОДАВЕЦ - КОНСУЛЬТАНТ»: Обязанности: продажа мобильных телефонов и аксессуаров для мобильной связи сервисное обслуживание абонентов Билайн, Теле2, МТС подключение тарифных планов и услуг Билайн и Теле2, МТС консультирование […]
    • Параллелепипед формулы Параллелепипед – это многогранник с 6 гранями, каждая из которых является параллелограммом. Прямоугольный параллелепипед – это параллелепипед, каждая грань которого является прямоугольником. Любой параллелепипед характеризуется 3 […]
    • Общество защиты прав потребителя астана Для того, что бы получить pin-код для доступа к данному документу на нашем сайте, отправьте sms-сообщение с текстом zan на номер Абоненты GSM-операторов (Activ, Kcell, Beeline, NEO, Tele2) отправив SMS на номер, […]
    • ПРАВОПИСАНИЕ Н И НН В РАЗНЫХ ЧАСТЯХ РЕЧИ С.Г.ЗЕЛИНСКАЯ ДИДАКТИЧЕСКИЙ МАТЕРИАЛ Теоретическая зарядка 1. Когда в прилагательных пишется нн? 2. Назовите исключения из этих правил. 3. Как отличить отглагольное прилагательное с суффиксом -н- от причастия с […]
    • Принять закон о Родовых поместьях Принять федеральный закон о безвозмездном выделении каждому желающему гражданину Российской Федерации или семье граждан участка земли для обустройства на нем Родового Поместья на следующих условиях: 1. Участок выделяется для […]
    • ИНСПЕКЦИЯ ГОСТЕХНАДЗОРА БРЯНСКОЙ ОБЛАСТИ Квитанция об оплате госпошлины(Скачать-12,2 kb) Заявления на регистрацию для физ.лиц(Скачать-12 kb) Заявления на регистрацию для юр.лиц(Скачать-11,4 kb) 1. При регистрации новой машины: 1.заявление 2.паспорт […]
    • Давненько мы не играли турниров 1х1. И пора бы наверное возобновить эту традицию. Пока мы не можем организовать отдельный ладдер и турниры для 1х1 игроков, предлагаем использовать ваши командные профайлы на сайте. Очки за игры в матчах снимать или добавлять […]
  • Рассмотрим тему преобразования выражений со степенями, но прежде остановимся на ряде преобразований, которые можно проводить с любыми выражениями, в том числе со степенными. Мы научимся раскрывать скобки, приводить подобные слагаемые, работать с основанием и показателем степени, использовать свойства степеней.

    Что представляют собой степенные выражения?

    В школьном курсе мало кто использует словосочетание «степенные выражения», зато этот термин постоянно встречается в сборниках для подготовки к ЕГЭ. В большинства случаев словосочетанием обозначаются выражения, которые содержат в своих записях степени. Это мы и отразим в нашем определении.

    Определение 1

    Степенное выражение – это выражение, которое содержит степени.

    Приведем несколько примеров степенных выражений, начиная со степени с натуральным показателем и заканчивая степенью с действительным показателем.

    Самыми простыми степенными выражениями можно считать степени числа с натуральным показателем: 3 2 , 7 5 + 1 , (2 + 1) 5 , (− 0 , 1) 4 , 2 2 3 3 , 3 · a 2 − a + a 2 , x 3 − 1 , (a 2) 3 . А также степени с нулевым показателем: 5 0 , (a + 1) 0 , 3 + 5 2 − 3 , 2 0 . И степени с целыми отрицательными степенями: (0 , 5) 2 + (0 , 5) - 2 2 .

    Чуть сложнее работать со степенью, имеющей рациональный и иррациональный показатели: 264 1 4 - 3 · 3 · 3 1 2 , 2 3 , 5 · 2 - 2 2 - 1 , 5 , 1 a 1 4 · a 1 2 - 2 · a - 1 6 · b 1 2 , x π · x 1 - π , 2 3 3 + 5 .

    В качестве показателя может выступать переменная 3 x - 54 - 7 · 3 x - 58 или логарифм x 2 · l g x − 5 · x l g x .

    С вопросом о том, что такое степенные выражения, мы разобрались. Теперь займемся их преобразованием.

    Основные виды преобразований степенных выражений

    В первую очередь мы рассмотрим основные тождественные преобразования выражений, которые можно выполнять со степенными выражениями.

    Пример 1

    Вычислите значение степенного выражения 2 3 · (4 2 − 12) .

    Решение

    Все преобразования мы будем проводить с соблюдением порядка выполнения действий. В данном случае начнем мы с выполнения действий в скобках: заменим степень на цифровое значение и вычислим разность двух чисел. Имеем 2 3 · (4 2 − 12) = 2 3 · (16 − 12) = 2 3 · 4 .

    Нам остается заменить степень 2 3 ее значением 8 и вычислить произведение 8 · 4 = 32 . Вот наш ответ.

    Ответ: 2 3 · (4 2 − 12) = 32 .

    Пример 2

    Упростите выражение со степенями 3 · a 4 · b − 7 − 1 + 2 · a 4 · b − 7 .

    Решение

    Данное нам в условии задачи выражение содержит подобные слагаемые, которые мы можем привести: 3 · a 4 · b − 7 − 1 + 2 · a 4 · b − 7 = 5 · a 4 · b − 7 − 1 .

    Ответ: 3 · a 4 · b − 7 − 1 + 2 · a 4 · b − 7 = 5 · a 4 · b − 7 − 1 .

    Пример 3

    Представьте выражение со степенями 9 - b 3 · π - 1 2 в виде произведения.

    Решение

    Представим число 9 как степень 3 2 и применим формулу сокращенного умножения:

    9 - b 3 · π - 1 2 = 3 2 - b 3 · π - 1 2 = = 3 - b 3 · π - 1 3 + b 3 · π - 1

    Ответ: 9 - b 3 · π - 1 2 = 3 - b 3 · π - 1 3 + b 3 · π - 1 .

    А теперь перейдем к разбору тождественных преобразований, которые могут применяться именно в отношении степенных выражений.

    Работа с основанием и показателем степени

    Степень в основании или показателе может иметь и числа, и переменные, и некоторые выражения. Например, (2 + 0 , 3 · 7) 5 − 3 , 7 и . Работать с такими записями сложно. Намного проще заменить выражение в основании степени или выражение в показателе тождественно равным выражением.

    Проводятся преобразования степени и показателя по известным нам правилам отдельно друг от друга. Самое главное, чтобы в результате преобразований получилось выражение, тождественное исходному.

    Цель преобразований – упростить исходное выражение или получить решение задачи. Например, в примере, который мы привели выше, (2 + 0 , 3 · 7) 5 − 3 , 7 можно выполнить действия для перехода к степени 4 , 1 1 , 3 . Раскрыв скобки, мы можем привести подобные слагаемые в основании степени (a · (a + 1) − a 2) 2 · (x + 1) и получить степенное выражение более простого вида a 2 · (x + 1) .

    Использование свойств степеней

    Свойства степеней, записанные в виде равенств, являются одним из главных инструментов преобразования выражений со степенями. Приведем здесь основные из них, учитывая, что a и b – это любые положительные числа, а r и s - произвольные действительные числа:

    Определение 2

    • a r · a s = a r + s ;
    • a r: a s = a r − s ;
    • (a · b) r = a r · b r ;
    • (a: b) r = a r: b r ;
    • (a r) s = a r · s .

    В тех случаях, когда мы имеем дело с натуральными, целыми, положительными показателями степени, ограничения на числа a и b могут быть гораздо менее строгими. Так, например, если рассмотреть равенство a m · a n = a m + n , где m и n – натуральные числа, то оно будет верно для любых значений a , как положительных, так и отрицательных, а также для a = 0 .

    Применять свойства степеней без ограничений можно в тех случаях, когда основания степеней положительные или содержат переменные, область допустимых значений которых такова, что на ней основания принимают лишь положительные значения. Фактически, в рамках школьной программы по математике задачей учащегося является выбор подходящего свойства и правильное его применение.

    При подготовке к поступлению в Вузы могут встречаться задачи, в которых неаккуратное применение свойств будет приводить к сужению ОДЗ и другим сложностям с решением. В данном разделе мы разберем всего два таких случая. Больше информации по вопросу можно найти в теме «Преобразование выражений с использованием свойств степеней».

    Пример 4

    Представьте выражение a 2 , 5 · (a 2) − 3: a − 5 , 5 в виде степени с основанием a .

    Решение

    Для начала используем свойство возведения в степень и преобразуем по нему второй множитель (a 2) − 3 . Затем используем свойства умножения и деления степеней с одинаковым основанием:

    a 2 , 5 · a − 6: a − 5 , 5 = a 2 , 5 − 6: a − 5 , 5 = a − 3 , 5: a − 5 , 5 = a − 3 , 5 − (− 5 , 5) = a 2 .

    Ответ: a 2 , 5 · (a 2) − 3: a − 5 , 5 = a 2 .

    Преобразование степенных выражений согласно свойству степеней может производиться как слева направо, так и в обратном направлении.

    Пример 5

    Найти значение степенного выражения 3 1 3 · 7 1 3 · 21 2 3 .

    Решение

    Если мы применим равенство (a · b) r = a r · b r , справа налево, то получим произведение вида 3 · 7 1 3 · 21 2 3 и дальше 21 1 3 · 21 2 3 . Сложим показатели при умножении степеней с одинаковыми основаниями: 21 1 3 · 21 2 3 = 21 1 3 + 2 3 = 21 1 = 21 .

    Есть еще один способ провести преобразования:

    3 1 3 · 7 1 3 · 21 2 3 = 3 1 3 · 7 1 3 · (3 · 7) 2 3 = 3 1 3 · 7 1 3 · 3 2 3 · 7 2 3 = = 3 1 3 · 3 2 3 · 7 1 3 · 7 2 3 = 3 1 3 + 2 3 · 7 1 3 + 2 3 = 3 1 · 7 1 = 21

    Ответ: 3 1 3 · 7 1 3 · 21 2 3 = 3 1 · 7 1 = 21

    Пример 6

    Дано степенное выражение a 1 , 5 − a 0 , 5 − 6 , введите новую переменную t = a 0 , 5 .

    Решение

    Представим степень a 1 , 5 как a 0 , 5 · 3 . Используем свойство степени в степени (a r) s = a r · s справа налево и получим (a 0 , 5) 3: a 1 , 5 − a 0 , 5 − 6 = (a 0 , 5) 3 − a 0 , 5 − 6 . В полученное выражение можно без проблем вводить новую переменную t = a 0 , 5 : получаем t 3 − t − 6 .

    Ответ: t 3 − t − 6 .

    Преобразование дробей, содержащих степени

    Обычно мы имеем дело с двумя вариантами степенных выражений с дробями: выражение представляет собой дробь со степенью или содержит такую дробь. К таким выражениям применимы все основные преобразования дробей без ограничений. Их можно сокращать, приводить к новому знаменателю, работать отдельно с числителем и знаменателем. Проиллюстрируем это примерами.

    Пример 7

    Упростить степенное выражение 3 · 5 2 3 · 5 1 3 - 5 - 2 3 1 + 2 · x 2 - 3 - 3 · x 2 .

    Решение

    Мы имеем дело с дробью, поэтому проведем преобразования и в числителе, и в знаменателе:

    3 · 5 2 3 · 5 1 3 - 5 - 2 3 1 + 2 · x 2 - 3 - 3 · x 2 = 3 · 5 2 3 · 5 1 3 - 3 · 5 2 3 · 5 - 2 3 - 2 - x 2 = = 3 · 5 2 3 + 1 3 - 3 · 5 2 3 + - 2 3 - 2 - x 2 = 3 · 5 1 - 3 · 5 0 - 2 - x 2

    Поместим минус перед дробью для того, чтобы изменить знак знаменателя: 12 - 2 - x 2 = - 12 2 + x 2

    Ответ: 3 · 5 2 3 · 5 1 3 - 5 - 2 3 1 + 2 · x 2 - 3 - 3 · x 2 = - 12 2 + x 2

    Дроби, содержащие степени, приводятся к новому знаменателю точно также, как и рациональные дроби. Для этого необходимо найти дополнительный множитель и умножить на него числитель и знаменатель дроби. Подбирать дополнительный множитель необходимо таким образом, чтобы он не обращался в нуль ни при каких значениях переменных из ОДЗ переменных для исходного выражения.

    Пример 8

    Приведите дроби к новому знаменателю: а) a + 1 a 0 , 7 к знаменателю a , б) 1 x 2 3 - 2 · x 1 3 · y 1 6 + 4 · y 1 3 к знаменателю x + 8 · y 1 2 .

    Решение

    а) Подберем множитель, который позволит нам произвести приведение к новому знаменателю. a 0 , 7 · a 0 , 3 = a 0 , 7 + 0 , 3 = a , следовательно, в качестве дополнительного множителя мы возьмем a 0 , 3 . Область допустимых значений переменной а включает множество всех положительных действительных чисел. В этой области степень a 0 , 3 не обращается в нуль.

    Выполним умножение числителя и знаменателя дроби на a 0 , 3 :

    a + 1 a 0 , 7 = a + 1 · a 0 , 3 a 0 , 7 · a 0 , 3 = a + 1 · a 0 , 3 a

    б) Обратим внимание на знаменатель:

    x 2 3 - 2 · x 1 3 · y 1 6 + 4 · y 1 3 = = x 1 3 2 - x 1 3 · 2 · y 1 6 + 2 · y 1 6 2

    Умножим это выражение на x 1 3 + 2 · y 1 6 , получим сумму кубов x 1 3 и 2 · y 1 6 , т.е. x + 8 · y 1 2 . Это наш новый знаменатель, к которому нам надо привести исходную дробь.

    Так мы нашли дополнительный множитель x 1 3 + 2 · y 1 6 . На области допустимых значений переменных x и y выражение x 1 3 + 2 · y 1 6 не обращается в нуль, поэтому, мы можем умножить на него числитель и знаменатель дроби:
    1 x 2 3 - 2 · x 1 3 · y 1 6 + 4 · y 1 3 = = x 1 3 + 2 · y 1 6 x 1 3 + 2 · y 1 6 x 2 3 - 2 · x 1 3 · y 1 6 + 4 · y 1 3 = = x 1 3 + 2 · y 1 6 x 1 3 3 + 2 · y 1 6 3 = x 1 3 + 2 · y 1 6 x + 8 · y 1 2

    Ответ: а) a + 1 a 0 , 7 = a + 1 · a 0 , 3 a , б) 1 x 2 3 - 2 · x 1 3 · y 1 6 + 4 · y 1 3 = x 1 3 + 2 · y 1 6 x + 8 · y 1 2 .

    Пример 9

    Сократите дробь: а) 30 · x 3 · (x 0 , 5 + 1) · x + 2 · x 1 1 3 - 5 3 45 · x 0 , 5 + 1 2 · x + 2 · x 1 1 3 - 5 3 , б) a 1 4 - b 1 4 a 1 2 - b 1 2 .

    Решение

    а) Используем наибольший общий знаменатель (НОД), на который можно сократить числитель и знаменатель. Для чисел 30 и 45 это 15 . Также мы можем произвести сокращение на x 0 , 5 + 1 и на x + 2 · x 1 1 3 - 5 3 .

    Получаем:

    30 · x 3 · (x 0 , 5 + 1) · x + 2 · x 1 1 3 - 5 3 45 · x 0 , 5 + 1 2 · x + 2 · x 1 1 3 - 5 3 = 2 · x 3 3 · (x 0 , 5 + 1)

    б) Здесь наличие одинаковых множителей неочевидно. Придется выполнить некоторые преобразования для того, чтобы получить одинаковые множители в числителе и знаменателе. Для этого разложим знаменатель, используя формулу разности квадратов:

    a 1 4 - b 1 4 a 1 2 - b 1 2 = a 1 4 - b 1 4 a 1 4 2 - b 1 2 2 = = a 1 4 - b 1 4 a 1 4 + b 1 4 · a 1 4 - b 1 4 = 1 a 1 4 + b 1 4

    Ответ: а) 30 · x 3 · (x 0 , 5 + 1) · x + 2 · x 1 1 3 - 5 3 45 · x 0 , 5 + 1 2 · x + 2 · x 1 1 3 - 5 3 = 2 · x 3 3 · (x 0 , 5 + 1) , б) a 1 4 - b 1 4 a 1 2 - b 1 2 = 1 a 1 4 + b 1 4 .

    К числу основных действий с дробями относится приведение к новому знаменателю и сокращение дробей. Оба действия выполняют с соблюдением ряда правил. При сложении и вычитании дробей сначала дроби приводятся к общему знаменателю, после чего проводятся действия (сложение или вычитание) с числителями. Знаменатель остается прежним. Результатом наших действий является новая дробь, числитель которой является произведением числителей, а знаменатель есть произведение знаменателей.

    Пример 10

    Выполните действия x 1 2 + 1 x 1 2 - 1 - x 1 2 - 1 x 1 2 + 1 · 1 x 1 2 .

    Решение

    Начнем с вычитания дробей, которые располагаются в скобках. Приведем их к общему знаменателю:

    x 1 2 - 1 · x 1 2 + 1

    Вычтем числители:

    x 1 2 + 1 x 1 2 - 1 - x 1 2 - 1 x 1 2 + 1 · 1 x 1 2 = = x 1 2 + 1 · x 1 2 + 1 x 1 2 - 1 · x 1 2 + 1 - x 1 2 - 1 · x 1 2 - 1 x 1 2 + 1 · x 1 2 - 1 · 1 x 1 2 = = x 1 2 + 1 2 - x 1 2 - 1 2 x 1 2 - 1 · x 1 2 + 1 · 1 x 1 2 = = x 1 2 2 + 2 · x 1 2 + 1 - x 1 2 2 - 2 · x 1 2 + 1 x 1 2 - 1 · x 1 2 + 1 · 1 x 1 2 = = 4 · x 1 2 x 1 2 - 1 · x 1 2 + 1 · 1 x 1 2

    Теперь умножаем дроби:

    4 · x 1 2 x 1 2 - 1 · x 1 2 + 1 · 1 x 1 2 = = 4 · x 1 2 x 1 2 - 1 · x 1 2 + 1 · x 1 2

    Произведем сокращение на степень x 1 2 , получим 4 x 1 2 - 1 · x 1 2 + 1 .

    Дополнительно можно упростить степенное выражение в знаменателе, используя формулу разности квадратов: квадратов: 4 x 1 2 - 1 · x 1 2 + 1 = 4 x 1 2 2 - 1 2 = 4 x - 1 .

    Ответ: x 1 2 + 1 x 1 2 - 1 - x 1 2 - 1 x 1 2 + 1 · 1 x 1 2 = 4 x - 1

    Пример 11

    Упростите степенное выражение x 3 4 · x 2 , 7 + 1 2 x - 5 8 · x 2 , 7 + 1 3 .
    Решение

    Мы можем произвести сокращение дроби на (x 2 , 7 + 1) 2 . Получаем дробь x 3 4 x - 5 8 · x 2 , 7 + 1 .

    Продолжим преобразования степеней икса x 3 4 x - 5 8 · 1 x 2 , 7 + 1 . Теперь можно использовать свойство деления степеней с одинаковыми основаниями: x 3 4 x - 5 8 · 1 x 2 , 7 + 1 = x 3 4 - - 5 8 · 1 x 2 , 7 + 1 = x 1 1 8 · 1 x 2 , 7 + 1 .

    Переходим от последнего произведения к дроби x 1 3 8 x 2 , 7 + 1 .

    Ответ: x 3 4 · x 2 , 7 + 1 2 x - 5 8 · x 2 , 7 + 1 3 = x 1 3 8 x 2 , 7 + 1 .

    Множители с отрицательными показателями степени в большинстве случаев удобнее переносить из числителя в знаменатель и обратно, изменяя знак показателя. Это действие позволяет упростить дальнейшее решение. Приведем пример: степенное выражение (x + 1) - 0 , 2 3 · x - 1 можно заменить на x 3 · (x + 1) 0 , 2 .

    Преобразование выражений с корнями и степенями

    В задачах встречаются степенные выражения, которые содержат не только степени с дробными показателями, но и корни. Такие выражения желательно привести только к корням или только к степеням. Переход к степеням предпочтительнее, так как с ними проще работать. Такой переход является особенно предпочтительным, когда ОДЗ переменных для исходного выражения позволяет заменить корни степенями без необходимости обращаться к модулю или разбивать ОДЗ на несколько промежутков.

    Пример 12

    Представьте выражение x 1 9 · x · x 3 6 в виде степени.

    Решение

    Область допустимых значений переменной x определяется двумя неравенствами x ≥ 0 и x · x 3 ≥ 0 , которые задают множество [ 0 , + ∞) .

    На этом множестве мы имеем право перейти от корней к степеням:

    x 1 9 · x · x 3 6 = x 1 9 · x · x 1 3 1 6

    Используя свойства степеней, упростим полученное степенное выражение.

    x 1 9 · x · x 1 3 1 6 = x 1 9 · x 1 6 · x 1 3 1 6 = x 1 9 · x 1 6 · x 1 · 1 3 · 6 = = x 1 9 · x 1 6 · x 1 18 = x 1 9 + 1 6 + 1 18 = x 1 3

    Ответ: x 1 9 · x · x 3 6 = x 1 3 .

    Преобразование степеней с переменными в показателе

    Данные преобразования достаточно просто произвести, если грамотно использовать свойства степени. Например, 5 2 · x + 1 − 3 · 5 x · 7 x − 14 · 7 2 · x − 1 = 0 .

    Мы можем заменить произведением степени, в показателях которых находится сумма некоторой переменной и числа. В левой части это можно проделать с первым и последним слагаемыми левой части выражения:

    5 2 · x · 5 1 − 3 · 5 x · 7 x − 14 · 7 2 · x · 7 − 1 = 0 , 5 · 5 2 · x − 3 · 5 x · 7 x − 2 · 7 2 · x = 0 .

    Теперь поделим обе части равенства на 7 2 · x . Это выражение на ОДЗ переменной x принимает только положительные значения:

    5 · 5 - 3 · 5 x · 7 x - 2 · 7 2 · x 7 2 · x = 0 7 2 · x , 5 · 5 2 · x 7 2 · x - 3 · 5 x · 7 x 7 2 · x - 2 · 7 2 · x 7 2 · x = 0 , 5 · 5 2 · x 7 2 · x - 3 · 5 x · 7 x 7 x · 7 x - 2 · 7 2 · x 7 2 · x = 0

    Сократим дроби со степенями, получим: 5 · 5 2 · x 7 2 · x - 3 · 5 x 7 x - 2 = 0 .

    Наконец, отношение степеней с одинаковыми показателями заменяется степенями отношений, что приводит к уравнению 5 · 5 7 2 · x - 3 · 5 7 x - 2 = 0 , которое равносильно 5 · 5 7 x 2 - 3 · 5 7 x - 2 = 0 .

    Введем новую переменную t = 5 7 x , что сводит решение исходного показательного уравнения к решению квадратного уравнения 5 · t 2 − 3 · t − 2 = 0 .

    Преобразование выражений со степенями и логарифмами

    Выражения, содержащие с записи степени и логарифмы, также встречаются в задачах. Примером таких выражений могут служить: 1 4 1 - 5 · log 2 3 или log 3 27 9 + 5 (1 - log 3 5) · log 5 3 . Преобразование подобных выражений проводится с использованием разобранных выше подходов и свойств логарифмов, которые мы подробно разобрали в теме «Преобразование логарифмических выражений».

    Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

    Если вам нужно возвести какое-то конкретное число в степень, можете воспользоваться . А сейчас мы более подробно остановимся на свойствах степеней .

    Экспоненциальные числа открывают большие возможности, они позволяют нам преобразовать умножение в сложение, а складывать гораздо легче, чем умножать.

    Например, нам надо умножить 16 на 64. Произведение от умножения этих двух чисел равно 1024. Но 16 – это 4×4, а 64 – это 4х4х4. То есть 16 на 64=4x4x4x4x4, что также равно 1024.

    Число 16 можно представить также в виде 2х2х2х2, а 64 как 2х2х2х2х2х2, и если произвести умножение, мы опять получим 1024.

    А теперь используем правило . 16=4 2 , или 2 4 , 64=4 3 , или 2 6 , в то же время 1024=6 4 =4 5 , или 2 10 .

    Следовательно, нашу задачу можно записать по-другому: 4 2 х4 3 =4 5 или 2 4 х2 6 =2 10 , и каждый раз мы получаем 1024.

    Мы можем решить ряд аналогичных примеров и увидим, что умножение чисел со степенями сводится к сложению показателей степени , или экспонент, разумеется, при том условии, что основания сомножителей равны.

    Таким образом, мы можем, не производя умножения, сразу сказать, что 2 4 х2 2 х2 14 =2 20 .

    Это правило справедливо также и при делении чисел со степенями, но в этом случае экспонента делителя вычитается из экспоненты делимого . Таким образом, 2 5:2 3 =2 2 , что в обычных числах равно 32:8=4, то есть 2 2 . Подведем итоги:

    a m х a n =a m+n , a m: a n =a m-n , где m и n — целые числа.

    С первого взгляда может показаться, что такое умножение и деление чисел со степенями не очень удобно, ведь сначала надо представить число в экспоненциальной форме. Нетрудно представить в такой форме числа 8 и 16, то есть 2 3 и 2 4 , но как это сделать с числами 7 и 17? Или как поступать в тех случаях, когда число можно представить в экспоненциальной форме, но основания экспоненциальных выражений чисел сильно различаются. Например, 8×9 – это 2 3 х3 2 , и в этом случае мы не можем суммировать экспоненты. Ни 2 5 и ни 3 5 не являются ответом, ответ также не лежит в интервале между этими двумя числами.

    Тогда стоит ли вообще возиться с этим методом? Безусловно стоит. Он дает огром­ные преимущества, особенно при сложных и трудоемких вычислениях.

    Как умножать степени? Какие степени можно перемножить, а какие - нет? Как число умножить на степень?

    В алгебре найти произведение степеней можно в двух случаях:

    1) если степени имеют одинаковые основания;

    2) если степени имеют одинаковые показатели.

    При умножении степеней с одинаковыми основаниями надо основание оставить прежним, а показатели - сложить:

    При умножении степеней с одинаковыми показателями общий показатель можно вынести за скобки:

    Рассмотрим, как умножать степени, на конкретных примерах.

    Единицу в показателе степени не пишут, но при умножении степеней - учитывают:

    При умножении количество степеней может быть любое. Следует помнить, что перед буквой знак умножения можно не писать:

    В выражениях возведение в степень выполняется в первую очередь.

    Если нужно число умножить на степень, сначала следует выполнить возведение в степень, а уже потом - умножение:

    www.algebraclass.ru

    Сложение, вычитание, умножение, и деление степеней

    Сложение и вычитание степеней

    Очевидно, что числа со степенями могут слагаться, как другие величины , путем их сложения одно за другим со своими знаками .

    Так, сумма a 3 и b 2 есть a 3 + b 2 .
    Сумма a 3 — b n и h 5 -d 4 есть a 3 — b n + h 5 — d 4 .

    Коэффициенты одинаковых степеней одинаковых переменных могут слагаться или вычитаться.

    Так, сумма 2a 2 и 3a 2 равна 5a 2 .

    Это так же очевидно, что если взять два квадрата а, или три квадрата а, или пять квадратов а.

    Но степени различных переменных и различные степени одинаковых переменных , должны слагаться их сложением с их знаками.

    Так, сумма a 2 и a 3 есть сумма a 2 + a 3 .

    Это очевидно, что квадрат числа a, и куб числа a, не равно ни удвоенному квадрату a, но удвоенному кубу a.

    Сумма a 3 b n и 3a 5 b 6 есть a 3 b n + 3a 5 b 6 .

    Вычитание степеней проводится таким же образом, что и сложение, за исключением того, что знаки вычитаемых должны соответственно быть изменены.

    Или:
    2a 4 — (-6a 4) = 8a 4
    3h 2 b 6 — 4h 2 b 6 = -h 2 b 6
    5(a — h) 6 — 2(a — h) 6 = 3(a — h) 6

    Умножение степеней

    Числа со степенями могут быть умножены, как и другие величины, путем написания их одно за другим, со знаком умножения или без него между ними.

    Так, результат умножения a 3 на b 2 равен a 3 b 2 или aaabb.

    Или:
    x -3 ⋅ a m = a m x -3
    3a 6 y 2 ⋅ (-2x) = -6a 6 xy 2
    a 2 b 3 y 2 ⋅ a 3 b 2 y = a 2 b 3 y 2 a 3 b 2 y

    Результат в последнем примере может быть упорядочен путём сложения одинаковых переменных.
    Выражение примет вид: a 5 b 5 y 3 .

    Сравнивая несколько чисел(переменных) со степенями, мы можем увидеть, что если любые два из них умножаются, то результат — это число (переменная) со степенью, равной сумме степеней слагаемых.

    Так, a 2 .a 3 = aa.aaa = aaaaa = a 5 .

    Здесь 5 — это степень результата умножения, равная 2 + 3, сумме степеней слагаемых.

    Так, a n .a m = a m+n .

    Для a n , a берётся как множитель столько раз, сколько равна степень n;

    И a m , берётся как множитель столько раз, сколько равна степень m;

    Поэтому, степени с одинаковыми основами могут быть умножены путём сложения показателей степеней.

    Так, a 2 .a 6 = a 2+6 = a 8 . И x 3 .x 2 .x = x 3+2+1 = x 6 .

    Или:
    4a n ⋅ 2a n = 8a 2n
    b 2 y 3 ⋅ b 4 y = b 6 y 4
    (b + h — y) n ⋅ (b + h — y) = (b + h — y) n+1

    Умножьте (x 3 + x 2 y + xy 2 + y 3) ⋅ (x — y).
    Ответ: x 4 — y 4 .
    Умножьте (x 3 + x — 5) ⋅ (2x 3 + x + 1).

    Это правило справедливо и для чисел, показатели степени которых — отрицательные .

    1. Так, a -2 .a -3 = a -5 . Это можно записать в виде (1/aa).(1/aaa) = 1/aaaaa.

    2. y -n .y -m = y -n-m .

    3. a -n .a m = a m-n .

    Если a + b умножаются на a — b, результат будет равен a 2 — b 2: то есть

    Результат умножения суммы или разницы двух чисел равен сумме или разнице их квадратов.

    Если умножается сумма и разница двух чисел, возведённых в квадрат , результат будет равен сумме или разнице этих чисел в четвёртой степени.

    Так, (a — y).(a + y) = a 2 — y 2 .
    (a 2 — y 2)⋅(a 2 + y 2) = a 4 — y 4 .
    (a 4 — y 4)⋅(a 4 + y 4) = a 8 — y 8 .

    Деление степеней

    Числа со степенями могут быть поделены, как и другие числа, путем отнимая от делимого делителя, или размещением их в форме дроби.

    Таким образом a 3 b 2 делённое на b 2 , равно a 3 .

    Запись a 5 , делённого на a 3 , выглядит как $\frac $. Но это равно a 2 . В ряде чисел
    a +4 , a +3 , a +2 , a +1 , a 0 , a -1 , a -2 , a -3 , a -4 .
    любое число может быть поделено на другое, а показатель степени будет равен разнице показателей делимых чисел.

    При делении степеней с одинаковым основанием их показатели вычитаются. .

    Так, y 3:y 2 = y 3-2 = y 1 . То есть, $\frac = y$.

    И a n+1:a = a n+1-1 = a n . То есть $\frac = a^n$.

    Или:
    y 2m: y m = y m
    8a n+m: 4a m = 2a n
    12(b + y) n: 3(b + y) 3 = 4(b +y) n-3

    Правило также справедливо и для чисел с отрицательными значениями степеней.
    Результат деления a -5 на a -3 , равен a -2 .
    Также, $\frac: \frac = \frac .\frac = \frac = \frac $.

    h 2:h -1 = h 2+1 = h 3 или $h^2:\frac = h^2.\frac = h^3$

    Необходимо очень хорошо усвоить умножение и деление степеней, так как такие операции очень широко применяются в алгебре.

    Примеры решения примеров с дробями, содержащими числа со степенями

    1. Уменьшите показатели степеней в $\frac $ Ответ: $\frac $.

    2. Уменьшите показатели степеней в $\frac $. Ответ: $\frac $ или 2x.

    3. Уменьшите показатели степеней a 2 /a 3 и a -3 /a -4 и приведите к общему знаменателю.
    a 2 .a -4 есть a -2 первый числитель.
    a 3 .a -3 есть a 0 = 1, второй числитель.
    a 3 .a -4 есть a -1 , общий числитель.
    После упрощения: a -2 /a -1 и 1/a -1 .

    4. Уменьшите показатели степеней 2a 4 /5a 3 и 2 /a 4 и приведите к общему знаменателю.
    Ответ: 2a 3 /5a 7 и 5a 5 /5a 7 или 2a 3 /5a 2 и 5/5a 2 .

    5. Умножьте (a 3 + b)/b 4 на (a — b)/3.

    6. Умножьте (a 5 + 1)/x 2 на (b 2 — 1)/(x + a).

    7. Умножьте b 4 /a -2 на h -3 /x и a n /y -3 .

    8. Разделите a 4 /y 3 на a 3 /y 2 . Ответ: a/y.

    Свойства степени

    Напоминаем, что в данном уроке разбираются свойства степеней с натуральными показателями и нулём. Степени с рациональными показателями и их свойства будут рассмотрены в уроках для 8 классов.

    Степень с натуральным показателем обладает несколькими важными свойствами, которые позволяют упрощать вычисления в примерах со степенями.

    Свойство № 1
    Произведение степеней

    При умножении степеней с одинаковыми основаниями основание остаётся без изменений, а показатели степеней складываются.

    a m · a n = a m + n , где « a » - любое число, а « m », « n » - любые натуральные числа.

    Данное свойство степеней также действует на произведение трёх и более степеней.

  • Упростить выражение.
    b · b 2 · b 3 · b 4 · b 5 = b 1 + 2 + 3 + 4 + 5 = b 15
  • Представить в виде степени.
    6 15 · 36 = 6 15 · 6 2 = 6 15 · 6 2 = 6 17
  • Представить в виде степени.
    (0,8) 3 · (0,8) 12 = (0,8) 3 + 12 = (0,8) 15
  • Обратите внимание, что в указанном свойстве речь шла только об умножении степеней с одинаковыми основаниями . Оно не относится к их сложению.

    Нельзя заменять сумму (3 3 + 3 2) на 3 5 . Это понятно, если
    посчитать (3 3 + 3 2) = (27 + 9) = 36 , а 3 5 = 243

    Свойство № 2
    Частное степеней

    При делении степеней с одинаковыми основаниями основание остаётся без изменений, а из показателя степени делимого вычитают показатель степени делителя.

  • Записать частное в виде степени
    (2b) 5: (2b) 3 = (2b) 5 − 3 = (2b) 2
  • Вычислить.

    11 3 − 2 · 4 2 − 1 = 11 · 4 = 44
    Пример. Решить уравнение. Используем свойство частного степеней.
    3 8: t = 3 4

    Ответ: t = 3 4 = 81

    Пользуясь свойствами № 1 и № 2, можно легко упрощать выражения и производить вычисления.

      Пример. Упростить выражение.
      4 5m + 6 · 4 m + 2: 4 4m + 3 = 4 5m + 6 + m + 2: 4 4m + 3 = 4 6m + 8 − 4m − 3 = 4 2m + 5

    Пример. Найти значение выражения, используя свойства степени.

    2 11 − 5 = 2 6 = 64

    Обратите внимание, что в свойстве 2 речь шла только о делении степеней с одинаковыми основаниями.

    Нельзя заменять разность (4 3 −4 2) на 4 1 . Это понятно, если посчитать (4 3 −4 2) = (64 − 16) = 48 , а 4 1 = 4

    Свойство № 3
    Возведение степени в степень

    При возведении степени в степень основание степени остаётся без изменения, а показатели степеней перемножаются.

    (a n) m = a n · m , где « a » - любое число, а « m », « n » - любые натуральные числа.


    Обратите внимание, что свойство № 4, как и другие свойства степеней, применяют и в обратном порядке.

    (a n · b n)= (a · b) n

    То есть, чтобы перемножить степени с одинаковыми показателями можно перемножить основания, а показатель степени оставить неизменным.

  • Пример. Вычислить.
    2 4 · 5 4 = (2 · 5) 4 = 10 4 = 10 000
  • Пример. Вычислить.
    0,5 16 · 2 16 = (0,5 · 2) 16 = 1
  • В более сложных примерах могут встретиться случаи, когда умножение и деление надо выполнить над степенями с разными основаниями и разными показателями. В этом случае советуем поступать следующим образом.

    Например, 4 5 · 3 2 = 4 3 · 4 2 · 3 2 = 4 3 · (4 · 3) 2 = 64 · 12 2 = 64 · 144 = 9216

    Пример возведения в степень десятичной дроби.

    4 21 · (−0,25) 20 = 4 · 4 20 · (−0,25) 20 = 4 · (4 · (−0,25)) 20 = 4 · (−1) 20 = 4 · 1 = 4

    Свойства 5
    Степень частного (дроби)

    Чтобы возвести в степень частное, можно возвести в эту степень отдельно делимое и делитель, и первый результат разделить на второй.

    (a: b) n = a n: b n , где « a », « b » - любые рациональные числа, b ≠ 0, n - любое натуральное число.

  • Пример. Представить выражение в виде частного степеней.
    (5: 3) 12 = 5 12: 3 12
  • Напоминаем, что частное можно представить в виде дроби. Поэтому на теме возведение дроби в степень мы остановимся более подробно на следующей странице.

    Степени и корни

    Операции со степенями и корнями. Степень с отрицательным ,

    нулевым и дробным показателем. О выражениях, не имеющих смысла.

    Операции со степенями.

    1. При умножении степеней с одинаковым основанием их показатели складываются:

    a m · a n = a m + n .

    2. При делении степеней с одинаковым основанием их показатели вычитаются .

    3. Степень произведения двух или нескольких сомножителей равна произведению степеней этих сомножителей.

    4. Степень отношения (дроби) равна отношению степеней делимого (числителя) и делителя (знаменателя):

    (a / b ) n = a n / b n .

    5. При возведении степени в степень их показатели перемножаются:

    Все вышеприведенные формулы читаются и выполняются в обоих направлениях слева направо и наоборот.

    П р и м е р. (2 · 3 · 5 / 15) ² = 2 ² · 3 ² · 5 ² / 15 ² = 900 / 225 = 4 .

    Операции с корнями. Во всех нижеприведенных формулах символ означает арифметический корень (подкоренное выражение положительно).

    1. Корень из произведения нескольких сомножителей равен произведению корней из этих сомножителей:

    2. Корень из отношения равен отношению корней делимого и делителя:

    3. При возведении корня в степень достаточно возвести в эту степень подкоренное число:

    4. Если увеличить степень корня в m раз и одновременно возвести в m -ую степень подкоренное число, то значение корня не изменится:

    5. Если уменьшить степень корня в m раз и одновременно извлечь корень m -ой степени из подкоренного числа, то значение корня не изменится:


    Расширение понятия степени. До сих пор мы рассматривали степени только с натуральным показателем; но действия со степенями и корнями могут приводить также к отрицательным , нулевым и дробным показателям. Все эти показатели степеней требуют дополнительного определения.

    Степень с отрицательным показателем. Степень некоторого числа с отрицательным (целым) показателем определяется как единица, делённая на степень того же числа с показателем, равным абсолютной велечине отрицательного показателя:

    Т еперь формула a m : a n = a m — n может быть использована не только при m , большем, чем n , но и при m , меньшем, чем n .

    П р и м е р. a 4: a 7 = a 4 — 7 = a — 3 .

    Если мы хотим, чтобы формула a m : a n = a m n была справедлива при m = n , нам необходимо определение нулевой степени.

    Степень с нулевым показателем. Степень любого ненулевого числа с нулевым показателем равна 1.

    П р и м е р ы. 2 0 = 1, ( 5) 0 = 1, ( 3 / 5) 0 = 1.

    Степень с дробным показателем. Для того, чтобы возвести действительное число а в степень m / n , нужно извлечь корень n –ой степени из m -ой степени этого числа а:

    О выражениях, не имеющих смысла. Есть несколько таких выражений.

    где a ≠ 0 , не существует.

    В самом деле, если предположить, что x – некоторое число, то в соответствии с определением операции деления имеем: a = 0· x , т.e. a = 0, что противоречит условию: a ≠ 0

    любое число.

    В самом деле, если предположить, что это выражение равно некоторому числу x , то согласно определению операции деления имеем: 0 = 0 · x . Но это равенство имеет место при любом числе x , что и требовалось доказать.

    0 0 — любое число.

    Р е ш е н и е. Рассмотрим три основных случая:

    1) x = 0 это значение не удовлетворяет данному уравнению

    2) при x > 0 получаем: x / x = 1, т.e. 1 = 1, откуда следует,

    что x – любое число; но принимая во внимание, что в

    нашем случае x > 0 , ответом является x > 0 ;

    Правила умножения степеней с разным основанием

    СТЕПЕНЬ С РАЦИОНАЛЬНЫМ ПОКАЗАТЕЛЕМ,

    СТЕПЕННАЯ ФУНКЦИЯ IV

    § 69. Умножение и деление степеней с одинаковыми основаниями

    Теорема 1. Чтобы перемножить степени с одинаковыми основаниями, достаточно показатели степеней сложить, а основание оставить прежним , то есть

    Доказательство. По определению степени

    2 2 2 3 = 2 5 = 32; (-3) (-3) 3 = (-3) 4 = 81.

    Мы рассмотрели произведение двух степеней. На самом же деле доказанное свойство верно для любого числа степеней с одинаковыми основаниями.

    Теорема 2. Чтобы разделить степени с одинаковыми основаниями, когда показатель делимого больше показателя делителя, достаточно из показателя делимого вычесть показатель делителя, а основание оставить прежним, то есть при т > п

    (a =/= 0)

    Доказательство. Напомним, что частным от деления одного числа на другое называется число, которое при умножении на делитель дает делимое. Поэтому доказать формулу , где a =/= 0, это все равно, что доказать формулу

    Если т > п , то число т - п будет натуральным; следовательно, по теореме 1

    Теорема 2 доказана.

    Следует обратить внимание на то, что формула

    доказана нами лишь в предположении, что т > п . Поэтому из доказанного пока нельзя делать, например, таких выводов:

    К тому же степени с отрицательными показателями нами еще не рассматривались и мы пока что не знаем, какой смысл можно придать выражению 3 - 2 .

    Теорема 3. Чтобы возвести степень в степень, достаточно перемножить показатели, оставив основание степени прежним , то есть

    Доказательство. Используя определение степени и теорему 1 этого параграфа, получаем:

    что и требовалось доказать.

    Например, (2 3) 2 = 2 6 = 64;

    518 (Устно.) Определить х из уравнений:

    1) 2 2 2 2 3 2 4 2 5 2 6 = 2 x ; 3) 4 2 4 4 4 6 4 8 4 10 = 2 x ;

    2) 3 3 3 3 5 3 7 3 9 = 3 x ; 4) 1 / 5 1 / 25 1 / 125 1 / 625 = 1 / 5 x .

    519. (У с т н о.) Упростить:

    520. (У с т н о.) Упростить:

    521. Данные выражения представить в виде степеней с одинаковыми основаниями:

    1) 32 и 64; 3) 8 5 и 16 3 ; 5) 4 100 и 32 50 ;

    2) -1000 и 100; 4) -27 и -243; 6) 81 75 8 200 и 3 600 4 150 .

    Урок на тему: "Правила умножения и деления степеней с одинаковыми и разными показателями. Примеры"

    Дополнительные материалы
    Уважаемые пользователи, не забывайте оставлять свои комментарии, отзывы, пожелания. Все материалы проверены антивирусной программой.

    Обучающие пособия и тренажеры в интернет-магазине "Интеграл" для 7 класса
    Пособие к учебнику Ю.Н. Макарычева Пособие к учебнику А.Г. Мордковича

    Цель урока: научится производить действия со степенями числа.

    Для начала вспомним понятие "степень числа". Выражение вида $\underbrace{ a * a * \ldots * a }_{n}$ можно представить, как $a^n$.

    Справедливо также обратное: $a^n= \underbrace{ a * a * \ldots * a }_{n}$.

    Это равенство называется "запись степени в виде произведения". Оно поможет нам определить, каким образом умножать и делить степени.
    Запомните:
    a – основание степени.
    n – показатель степени.
    Если n = 1 , значит, число а взяли один раз и соответственно: $a^n= a$.
    Если n= 0 , то $a^0= 1$.

    Почему так происходит, мы сможем выяснить, когда познакомимся с правилами умножения и деления степеней.

    Правила умножения

    a) Если умножаются степени с одинаковым основанием.
    Чтобы $a^n * a^m$, запишем степени в виде произведения: $\underbrace{ a * a * \ldots * a }_{n} * \underbrace{ a * a * \ldots * a }_{m}$.
    На рисунке видно, что число а взяли n+m раз, тогда $a^n * a^m = a^{n + m}$.

    Пример.
    $2^3 * 2^2 = 2^5 = 32$.

    Это свойство удобно использовать, что бы упростить работу при возведении числа в большую степень.
    Пример.
    $2^7= 2^3 * 2^4 = 8 * 16 = 128$.

    б) Если умножаются степени с разным основанием, но одинаковым показателем.
    Чтобы $a^n * b^n$, запишем степени в виде произведения: $\underbrace{ a * a * \ldots * a }_{n} * \underbrace{ b * b * \ldots * b }_{m}$.
    Если поменять местами множители и посчитать получившиеся пары, получим: $\underbrace{ (a * b) * (a * b) * \ldots * (a * b) }_{n}$.

    Значит, $a^n * b^n= (a * b)^n$.

    Пример.
    $3^2 * 2^2 = (3 * 2)^2 = 6^2= 36$.

    Правила деления

    a) Основание степени одинаковое, показатели разные.
    Рассмотрим деление степени с большим показателем на деление степени с меньшим показателем.

    Итак, надо $\frac{a^n}{a^m}$ , где n > m .

    Запишем степени в виде дроби:

    $\frac{\underbrace{ a * a * \ldots * a }_{n}}{\underbrace{ a * a * \ldots * a }_{m}}$.
    Для удобства деление запишем в виде простой дроби.

    Теперь сократим дробь.


    Получается: $\underbrace{ a * a * \ldots * a }_{n-m}= a^{n-m}$.
    Значит, $\frac{a^n}{a^m}=a^{n-m}$ .

    Это свойство поможет объяснить ситуацию с возведением числа в нулевую степень. Допустим, что n=m , тогда $a^0= a^{n-n}=\frac{a^n}{a^n} =1$.

    Примеры.
    $\frac{3^3}{3^2}=3^{3-2}=3^1=3$.

    $\frac{2^2}{2^2}=2^{2-2}=2^0=1$.

    б) Основания степени разные, показатели одинаковые.
    Допустим, необходимо $\frac{a^n}{ b^n}$. Запишем степени чисел в виде дроби:

    $\frac{\underbrace{ a * a * \ldots * a }_{n}}{\underbrace{ b * b * \ldots * b }_{n}}$.
    Для удобства представим.

    Используя свойство дробей, разобьем большую дробь на произведение маленьких, получим.
    $\underbrace{ \frac{a}{b} * \frac{a}{b} * \ldots * \frac{a}{b} }_{n}$.
    Соответственно: $\frac{a^n}{ b^n}=(\frac{a}{b})^n$.

    Пример.
    $\frac{4^3}{ 2^3}= (\frac{4}{2})^3=2^3=8$.